electromagnetic water flow meter

2019-08-30 04:05:38

electromagnetic water flow meter

Electrode: Its function is to extract and induce a proportional induced inductive potential signal. The electrodes are typically made of non-magnetically conductive stainless steel and are required to be flush with the liner so that the fluid passes unimpeded. It should be installed in the vertical direction of the pipe to prevent deposits from accumulating on it and affecting the measurement accuracy.
Enclosure: Made of ferromagnetic material, it is the cover of the distribution system excitation coil and isolates the interference of external magnetic field.
Lining: A complete electrical insulation lining on the inside of the measuring tube and on the flange sealing surface. It directly contacts the liquid to be measured, and its function is to increase the corrosion resistance of the measuring catheter and prevent the induced potential from being short-circuited by the metal measuring tube wall. Most of the lining materials are PTFE plastics and ceramics that are resistant to corrosion, high temperature and wear.
Converter: The induced potential signal generated by the liquid flow is very weak and is greatly affected by various interference factors. The function of the converter is to amplify and convert the induced potential signal into a unified standard signal and suppress the main interference signal. Its task is to amplify the induced potential signal Ex detected by the electrode into a unified standard DC signal.

electromagnetic water flow meter

Daily maintenance (2)
Converter check
If it is determined that the converter is faulty, if there is no problem in checking the external cause, please contact the manufacturer of the electromagnetic flowmeter. The manufacturer will generally solve the problem by replacing the circuit board.
Electrode maintenance
1. Before using the electromagnetic flowmeter, first calibrate the electromagnetic flowmeter with a standard pH solution. Before the calibration, before operation, you must pay attention to clean the electrode of the electromagnetic flowmeter with distilled water, and then clean the electrode again with the test liquid.
2. If you do not use the electromagnetic flowmeter, when you want to remove the electrode of the electromagnetic flowmeter, you should be careful not to let the electrode of the electrode collide with the hard object, otherwise the damage will affect the use of the electrode.
3. After using the electromagnetic flowmeter, you should put the electrode of the electromagnetic flowmeter on the sleeve, and put less saturated solution inside, just make sure that the bulb of the electrode is wet, but remember not to put it in distilled water. soak.
4. It is usually necessary to keep the electrode clean and do not let the output on both sides of it appear a short circuit. Otherwise, the measurement will be inaccurate and affect the use of the electromagnetic flowmeter.
In fact, there are still many ways to maintain the electrodes of the electromagnetic flowmeter. Everyone should pay more attention to the use process. Do not use the small negligence of the electromagnetic flowmeter in the future.

electromagnetic water flow meter

Vortex flowmeter working principle
The working principle of the vortex flowmeter is to arrange a vortex generator in the fluid, so that the vortex is alternately generated on both sides of the body, and the vortex column is asymmetrically arranged downstream of the vortex generator to generate a certain frequency, by the formula f= St*v/(1-1.27d/D)*d, (St is the Strauhal number, which is a dimensionless number, related to the vortex generator and Reynolds number; v is the flow velocity; d is the incident head width; D is the nominal diameter) to get the flow rate.
In general, the vortex flowmeter output signal (frequency) is not affected by changes in fluid properties and composition, which means that the meter factor is only related to the shape and size of the vortex generator and the Reynolds number. Its advantages are: simple and firm structure, convenient installation and maintenance; suitable for a variety of fluids, liquid, gas, steam and some mixed phases are applicable; high precision, generally up to ± 1% R; flow range is wide, up to 10 : 1 or 20:1 or more; low head loss; no zero drift; relatively cheap price; disadvantage: not suitable for low Reynolds number Re <20000, limited use of high viscosity, low flow rate, small diameter The requirements for the environment are high, and places with vibration should be eliminated as much as possible, and the upstream side needs to have a long straight pipe section; the meter factor is lower, and the larger the diameter, the lower the diameter. The signal resolution is reduced, so the aperture should not be too large, generally used in DN15~DN300mm.