Battery Operated Electromagnetic Flow meter

2019/9/26 15:16:19

Battery Operated Electromagnetic Flow meter

The structure of the electromagnetic flowmeter is mainly composed of a magnetic circuit system, a measuring conduit, an electrode, a casing, a lining, and a converter.
Magnetic circuit system: its role is to produce a uniform DC or AC magnetic field. The DC magnetic circuit is realized by a permanent magnet, which has the advantages of simple structure and less interference by the alternating magnetic field, but it is easy to polarize the electrolyte liquid in the measuring duct, so that the positive electrode is surrounded by negative ions, and the negative electrode is positive ion Surrounding, that is, the polarization phenomenon of the electrode, and causing an increase in internal resistance between the two electrodes, thus seriously affecting the normal operation of the meter. When the diameter of the pipe is large, the permanent magnets are correspondingly large, bulky and uneconomical, so the electromagnetic flowmeter generally adopts an alternating magnetic field and is generated by the excitation of a 50HZ power frequency power source.
Measuring catheter: its function is to let the conductive liquid to be tested pass. In order to make the magnetic flux diverted or short-circuited when the magnetic flux passes through the measuring catheter, the measuring catheter must be made of non-magnetic, low electrical conductivity, low thermal conductivity and mechanical strength. Non-magnetic stainless steel, FRP, high strength can be used. Plastic, aluminum, etc.

Battery Operated Electromagnetic Flow meter

Vortex flowmeter common fault
1. The measurement range of the vortex flowmeter is large, generally 10:1, but the lower limit of measurement is limited by many factors: Re>10000 is the most basic condition for the operation of the vortex flowmeter. In addition, it is also responded by the vortex. The signal, the vortex frequency f is also small, and it also makes signal processing difficult. The upper limit of measurement is the frequency response of the sensor and the frequency limit of the circuit. Therefore, the flow rate range must be calculated and calculated according to the flow rate of the fluid. The environmental conditions on the site are complicated. In addition to the conditions such as ambient temperature, humidity, and atmosphere, electromagnetic interference should also be considered.
2, vibration is also a big enemy of this type of instrument. Therefore, care should be taken to avoid mechanical vibrations, especially the lateral vibration of the pipe (perpendicular to the pipe axis and the vertical vortex generating body axis). This effect cannot be suppressed and eliminated in the design of the flowmeter structure. Since the vortex signal is equally sensitive to the influence of the flow field, it is not suitable for the length of the straight pipe section to ensure the flow conditions necessary for stabilizing the vortex street. Even the capacitive and ultrasonic type with strong anti-vibration performance guarantees that the fluid is a fully developed one-way flow, which is not negligible.
The medium temperature also has a great influence on the performance of the vortex flowmeter. For example, the pressure stress type vortex flowmeter cannot be used for a long time at 300 °C, because its insulation resistance is rapidly reduced from 10-100 MΩ at normal temperature to 1-101 Ω, and the output signal is also small, resulting in deterioration of measurement characteristics. In the measurement system, the sensor and the converter should be installed separately to avoid long-term high temperature affecting the reliability and service life of the instrument. The vortex flowmeter is a relatively new type of flowmeter. It is in the development stage and is not very mature. If it is not properly selected, the performance will not work well. Only after reasonable selection and correct installation, it is necessary to carefully and regularly maintain during the use process, accumulate experience, improve the predictability of system failure and the ability to judge and deal with problems, so as to achieve satisfactory results.

Battery Operated Electromagnetic Flow meter

Mass flow meter
Since the volume of the fluid is affected by parameters such as temperature and pressure, it is necessary to give the parameters of the medium when the flow rate is expressed by the volume flow. In the case of changing media parameters, it is often difficult to achieve this requirement, resulting in distortion of the meter display value. Therefore, mass flow meters have been widely used and valued. Mass flow meters are available in both direct and indirect versions. Direct mass flow meters are measured using principles directly related to mass flow. Currently used mass flow meters such as calorimetric, angular momentum, vibratory gyro, Magnus effect and Coriolis force. The indirect mass flow meter is obtained by directly multiplying the density meter by the volumetric flow rate to obtain the mass flow rate.
In modern industrial production, the operating parameters such as temperature and pressure of the flowing working fluid are continuously improved. In the case of high temperature and high pressure, due to the material and structure, the application of the direct mass flowmeter is difficult, and the indirect quality is encountered. Flowmeters are often not suitable for practical applications because they are limited by the range of humidity and pressure. Therefore, a temperature-pressure-compensated mass flowmeter is widely used in industrial production. It can be regarded as an indirect mass flow meter. Instead of using a density meter, it uses the relationship between temperature, pressure and density. It uses a temperature and pressure signal to calculate the density signal by function, and multiplies it by the volume flow. Mass Flow. At present, temperature and pressure-compensated mass flowmeters have been put into practical use. However, when the measured medium parameters vary widely or rapidly, it will be difficult or impossible to correctly compensate, so further study the mass flow rate applicable in actual production. Meters and densitometers are still a topic.
Chen's above-mentioned common structural principle of flowmeters is much better than various types of flowmeters, such as various helium flowmeters and trough flowmeters for open channel flow measurement; flowmeters suitable for large-caliber flow measurement; measuring laminar flow Laminar flowmeter; related flowmeter for two-phase flow measurement; and laser method, nuclear magnetic resonance flowmeter and various tracer methods, dilution method flow measurement, etc. With the development of technology and practical application needs, the new flowmeter will continue to emerge more types of flowmeters.