flange electromagnetic flow meter sensor

2019-09-27 14:54:36

flange electromagnetic flow meter sensor

1. Requirements for straight pipe sections
Inlet/outlet straight pipe section: inlet should be ≥10×DN; outlet should be ≥5×DN
2. Grounding point requirement
In order to make the instrument work reliably, improve the measurement accuracy, free from external parasitic potential / the sensor should have good grounding, the grounding resistance is less than 10. (If the metal pipe is well grounded, no special grounding device is required) 3.3 Pair installation Location requirements as shown
Insert the electromagnetic flowmeter according to the situation of the pipeline in the field. If the flowmeter without the ball valve is installed, it should be installed on the pipeline without overpressure (that is, the flowmeter without the ball valve can be installed without pressure), and the hole is opened in the pipeline. Diameter 50, ready to weld the connecting welded pipe to the opening of the pipe; for occasions requiring constant flow loading or unloading or no media spillage, a ball valve must be installed, that is, a plug-in electromagnetic flowmeter with a ball valve structure is selected; With a diameter of 50, it is ready to weld the connecting welded pipe to the opening of the pipe.
Measuring range : Recommended range: 0.5m/s to 10m/s continuously adjustable. Maximum use range: continuously adjustable from 0.2m/s to 15m/s
Signal output: 1, the switch quantity can be set to: pulse output (up to 1000HZ); high/low flow alarm; empty pipe alarm; flow direction indication;
Fault alarm; 2, current output: 4-20mA output
Configuration method: 1. Field configuration through three manual keys. 2. Field configuration via remote control. 3. Perform on-site configuration through the handheld communicator.
Memory: The memory that the EEPROM does not disappear, no battery saving.

flange electromagnetic flow meter sensor

Vortex flowmeter verification detection method
Standard table method
The vortex flowmeter is used as a standard device in series with the flowmeter to be inspected, and can be verified by static method or dynamic method. By comparing the readings of the two flow meters, the error of the vortex flowmeter to be tested is obtained.
Standard table flow meter standard device features:
1. Standard table method is suitable for measuring various fluids (including liquids and gases), and also for liquids of various viscosities.
2. The indication value is checked. The flow meter used as the standard meter is installed in series with the flowmeter to be tested in the same closed pipeline system. Generally, there is no time measurement error.
3. As a standard table, the vortex flowmeter can be the same as or different from the flowmeter to be tested.
4. When the flow meter is verified by the standard meter method, the airflow or liquid flow can be not cut off, so it is suitable for online verification, and is also suitable for the measurement standard for the closed pipeline. 5, the standard table method is easy to achieve automation, sealed and safe, does not pollute the environment.
6. Small size, light weight, simple device structure, convenient operation, easy transportation and installation, and low cost.
7. Standard meter flowmeters have low accuracy and poor stability, and often need to be compared regularly or irregularly to monitor their metering performance. The standard table has a shorter verification period.

flange electromagnetic flow meter sensor

Ultrasonic flowmeter
The ultrasonic flowmeter is designed based on the geometrical principle that the velocity of the ultrasonic wave propagating in the flowing medium is equal to the average flow velocity of the measured medium and the velocity of the acoustic wave itself. It is also measured by the flow rate to reflect the flow rate. Although the ultrasonic flowmeter appeared only in the 1970s, it is very popular because it can be made into a non-contact type and can be connected to the ultrasonic water level gauge for opening flow measurement without disturbing or resisting the fluid. There are promising flow meters.
Ultrasonic Doppler flowmeters fabricated using the Doppler effect have received widespread attention in recent years and are considered to be ideal gauges for non-contact measurement of two-phase flow.
Fluid oscillating flowmeter
The fluid oscillating flowmeter is designed based on the principle that the fluid will oscillate when flowing under specific flow conditions, and the frequency of the oscillation is proportional to the flow velocity. When the flow cross section is constant, the flow rate is proportional to the flow volume of the pilot volume. Therefore, the flow rate can be measured by measuring the oscillation frequency. This flowmeter was developed and developed in the 1970s. Because it combines the advantages of non-rotating components and pulsed digital output, it has a promising future. At present, typical products include vortex flowmeters and spiral vortex flowmeters.