chemical liquid corrosive medium magnetic flow meter

2019-09-28 11:17:11

chemical liquid corrosive medium magnetic flow meter

Application of electromagnetic flowmeter
Because electromagnetic flowmeter has its unique advantages, it is widely used in chemical, chemical fiber, food, paper, sugar, water supply and drainage, environmental protection, water conservancy, steel, petroleum, pharmaceutical and other industrial fields. Various acid and alkali salt solutions, mud, pulp, pulp, coal water slurry, corn syrup, fiber pulp, lime slurry, water supply and drainage, brine, hydrogen peroxide, beer, wort, various beverages, black liquor, green liquor, etc. The volumetric flow of the medium.
The main technical parameters
Nominal diameter series DN (mm)
Pipeline PTFE lining:
10,15,20,25,32,40,50,65,80,100,
125,150,200,250,300,350,400,
450,500,600
Pipeline rubber lining:
40,50,65,80,100,125,150,200,250,
300,350,400,500,600,800,1000,
1200
Special specifications can be customized
Flow direction: current output
Positive, negative, net flow
Range ratio: 150:1
Repeatability error: ±0.1 of the measured value
Accuracy level: pipeline type: 0.5 level, 1.0 level
Measured medium temperature
Ordinary rubber lining: -20 ~ +60 ° C
High temperature rubber lining: -20 ~ +90 ° C
PTFE lining: -30 ~ +100 ° C
High temperature PTFE lining: -30 ~ +180 ° C
Rated operating voltage
Pipe type: DN6-DN100≤1.6Mpa, DN125-DN225≤1.0Mpa high pressure can be customized
Conductivity range:
Conductivity of the measured fluid ≥ 5us / cm (integrated)
Most water-based media have a conductivity of 200-800 us/cm, and electromagnetic flow meters can be used to measure the flow rate.
Load resistance: 0 ~ 10mA, 0 ~ 1.5kΩ
          4 to 20 mA, 0 to 750 Ω
Digital frequency output
The upper limit of the output frequency can be set to open the bidirectional output of the open collector of the transistor with optical isolation from 1 to 5000HZ. External ≤35V, the maximum current of the collector is 25mA when conducting
Power supply
85~265V, 45~63HZ
Straight pipe length
Pipeline type: upstream ≥5DN, downstream ≥2DN
Connection method
The flowmeter and the pipe are flanged, and the flange connection size should meet the requirements of GB11988.
Explosion-proof mark: mdllBT4
Ambient temperature: -10 ° C ~ +55 ° C
Relative temperature: 5% to 90%
Total power consumption: less than 15W

chemical liquid corrosive medium magnetic flow meter

Vortex flowmeter analysis and solution

3. Reasons for parameter setting direction. The instrument is incorrectly indicated due to a parameter error. The parameter error makes the secondary meter full frequency calculation error, and the reason for this is mainly related to questions 1 and 3. The full-scale frequency is similar, indicating that the long-term inaccuracy is indicated. The full-scale frequency of the actual full-scale frequency and large-dry calculation indicates that the range is fluctuating and cannot be read. The inconsistency of the parameters on the data affects the final determination of the parameters, and finally passes. Recalibration combined with mutual comparison to determine the parameters solves this problem.
4. The secondary instrument is faulty. There are many faults in this part, including: when the instrument board is disconnected, the range setting has individual bit display bad, and the K coefficient setting has individual bit display bad, which makes it impossible to determine the range setting and K factor setting. Part of the reason is mainly related to questions 1, 2. The problem is solved by fixing the corresponding fault.
5, Four-way line connection problem. On the surface of some circuits, the line connection is very good. Check carefully. Some connectors are actually loose and the circuit is interrupted. Some connectors are tightly connected, but the fastening screws are fastened to the wire due to the secondary line problem. Interruption, this part of the reason is mainly related to question.

chemical liquid corrosive medium magnetic flow meter

Ultrasonic flowmeter
The ultrasonic flowmeter is designed based on the geometrical principle that the velocity of the ultrasonic wave propagating in the flowing medium is equal to the average flow velocity of the measured medium and the velocity of the acoustic wave itself. It is also measured by the flow rate to reflect the flow rate. Although the ultrasonic flowmeter appeared only in the 1970s, it is very popular because it can be made into a non-contact type and can be connected to the ultrasonic water level gauge for opening flow measurement without disturbing or resisting the fluid. There are promising flow meters.
Ultrasonic Doppler flowmeters fabricated using the Doppler effect have received widespread attention in recent years and are considered to be ideal gauges for non-contact measurement of two-phase flow.
Fluid oscillating flowmeter
The fluid oscillating flowmeter is designed based on the principle that the fluid will oscillate when flowing under specific flow conditions, and the frequency of the oscillation is proportional to the flow velocity. When the flow cross section is constant, the flow rate is proportional to the flow volume of the pilot volume. Therefore, the flow rate can be measured by measuring the oscillation frequency. This flowmeter was developed and developed in the 1970s. Because it combines the advantages of non-rotating components and pulsed digital output, it has a promising future. At present, typical products include vortex flowmeters and spiral vortex flowmeters.