caustic soda electromagnetic flow meter

2019-09-28 19:21:11

caustic soda electromagnetic flow meter

Flowmeter challenges
Traditional mechanical flowmeters, such as differential pressure flowmeters, positive displacement flowmeters, and variable area flowmeters, are already in the stage of popularization, with fierce price competition, decreasing profit margins, less technological innovation, and relatively mature markets. . Frost & Sullivan believes that achieving product differentiation and customized production is an important breakthrough for manufacturers in the fierce competition in mature markets. Based on Frost & Sullivan's analysis of the needs of industry users, the user community expects manufacturers to provide automated equipment that will bring tangible benefits to the production process. Users will have specific requirements in the application process, such as: application in the special environment of the petrochemical industry, the need for rugged design and explosion-proof certification; user demand for Coriolis flowmeter designed for straight pipe. How to effectively obtain the actual needs of users and improve the traditional products is a challenge to the manufacturer's differentiated and customized production process.
Guiding users to accept and use new technology flow meters, such as ultrasonic flow meters, electromagnetic flow meters, and thermal mass flow meters, is another challenge for manufacturers to make the market bigger and stronger. In fact, the new technology flowmeter mentioned above has been developed and applied more than ten years ago. How to make customers realize that using the new technology flowmeter can effectively improve the production efficiency is an important issue for manufacturers.
In addition, new technology flowmeters are constantly being introduced into various industries, and fast and efficient after-sales service is also crucial for manufacturers. In particular, the use of Flowfield based on Foundation Fieldbus and Profibus PA bus has certain requirements for software technology. Effective services can provide users with more suitable solutions and close to users.

caustic soda electromagnetic flow meter

Vortex flowmeter analysis and solution

3. Reasons for parameter setting direction. The instrument is incorrectly indicated due to a parameter error. The parameter error makes the secondary meter full frequency calculation error, and the reason for this is mainly related to questions 1 and 3. The full-scale frequency is similar, indicating that the long-term inaccuracy is indicated. The full-scale frequency of the actual full-scale frequency and large-dry calculation indicates that the range is fluctuating and cannot be read. The inconsistency of the parameters on the data affects the final determination of the parameters, and finally passes. Recalibration combined with mutual comparison to determine the parameters solves this problem.
4. The secondary instrument is faulty. There are many faults in this part, including: when the instrument board is disconnected, the range setting has individual bit display bad, and the K coefficient setting has individual bit display bad, which makes it impossible to determine the range setting and K factor setting. Part of the reason is mainly related to questions 1, 2. The problem is solved by fixing the corresponding fault.
5, Four-way line connection problem. On the surface of some circuits, the line connection is very good. Check carefully. Some connectors are actually loose and the circuit is interrupted. Some connectors are tightly connected, but the fastening screws are fastened to the wire due to the secondary line problem. Interruption, this part of the reason is mainly related to question.

caustic soda electromagnetic flow meter

Mass flow meter
Since the volume of the fluid is affected by parameters such as temperature and pressure, it is necessary to give the parameters of the medium when the flow rate is expressed by the volume flow. In the case of changing media parameters, it is often difficult to achieve this requirement, resulting in distortion of the meter display value. Therefore, mass flow meters have been widely used and valued. Mass flow meters are available in both direct and indirect versions. Direct mass flow meters are measured using principles directly related to mass flow. Currently used mass flow meters such as calorimetric, angular momentum, vibratory gyro, Magnus effect and Coriolis force. The indirect mass flow meter is obtained by directly multiplying the density meter by the volumetric flow rate to obtain the mass flow rate.
In modern industrial production, the operating parameters such as temperature and pressure of the flowing working fluid are continuously improved. In the case of high temperature and high pressure, due to the material and structure, the application of the direct mass flowmeter is difficult, and the indirect quality is encountered. Flowmeters are often not suitable for practical applications because they are limited by the range of humidity and pressure. Therefore, a temperature-pressure-compensated mass flowmeter is widely used in industrial production. It can be regarded as an indirect mass flow meter. Instead of using a density meter, it uses the relationship between temperature, pressure and density. It uses a temperature and pressure signal to calculate the density signal by function, and multiplies it by the volume flow. Mass Flow. At present, temperature and pressure-compensated mass flowmeters have been put into practical use. However, when the measured medium parameters vary widely or rapidly, it will be difficult or impossible to correctly compensate, so further study the mass flow rate applicable in actual production. Meters and densitometers are still a topic.
Chen's above-mentioned common structural principle of flowmeters is much better than various types of flowmeters, such as various helium flowmeters and trough flowmeters for open channel flow measurement; flowmeters suitable for large-caliber flow measurement; measuring laminar flow Laminar flowmeter; related flowmeter for two-phase flow measurement; and laser method, nuclear magnetic resonance flowmeter and various tracer methods, dilution method flow measurement, etc. With the development of technology and practical application needs, the new flowmeter will continue to emerge more types of flowmeters.