2019-09-30 11:35:10

Use and promotion of electromagnetic flowmeter

The intelligent electromagnetic flowmeter is a fully intelligent electromagnetic flowmeter developed by our company using advanced technology at home and abroad. Its all-Chinese electromagnetic converter core adopts high-speed central processing unit, which has fast calculation speed, high precision and reliable measurement performance. The converter circuit design adopts the latest international technology, the input impedance is up to 1015 ohms, the common mode rejection ratio is better than 100db, and the external interference and 60Hz/50Hz interference suppression ability is better than 90db, which can measure the lower conductivity fluid medium flow. The sensor adopts a new non-uniform magnetic field technology and a special magnetic circuit structure. The magnetic field is stable and reliable, and the volume is greatly reduced, the weight is reduced, and the flowmeter has the characteristics of small size and light weight. Adhering to the enterprise spirit of "seeking truth, hard work, innovation and development", we insist on "customer first, technology first, high quality, first-class service", we will provide you with first-class products and first-class service.

Variable area flowmeter (equal pressure drop flowmeter)

The float placed in the upper and lower small tapered flow passages is moved by the force of the fluid flowing from the bottom to the top. When this force is balanced with the "display weight" of the float (the weight of the float itself minus the buoyancy of the fluid it receives), the capture is stationary. The height at which the float is stationary can be used as a measure of the flow rate. Since the cross-sectional area of ??the flowmeter varies with the height of the float, and the pressure difference between the upper and lower parts is equal when the float is stationary, the flowmeter is called a variable area flowmeter or an equal pressure dropmeter. A typical instrument of this type of flow meter is a rotor (float) flow meter.

Momentum flowmeter

A flowmeter weighing flowmeter that uses the momentum of a measuring fluid to reflect the flow rate. Since the momentum P of the flowing fluid is proportional to the density of the fluid and the square of the flow velocity v, i.e., p v2 , when the flow cross section is determined, v is proportional to the volumetric flow rate Q, so p Q2 . Set the proportional coefficient to A, then Q=A. Therefore, P is measured to reflect the flow rate Q. In this type of flowmeter, most of the flowmeters are used to convert momentum into pressure, displacement or force, and then the flow rate is measured. Typical meters for such flow meters are target and rotary wing flow meters.

Ultrasonic flowmeter

The ultrasonic flowmeter is designed based on the geometrical principle that the velocity of the ultrasonic wave propagating in the flowing medium is equal to the average flow velocity of the measured medium and the velocity of the acoustic wave itself. It is also measured by the flow rate to reflect the flow rate. Although the ultrasonic flowmeter appeared only in the 1970s, it is very popular because it can be made into a non-contact type and can be connected to the ultrasonic water level gauge for opening flow measurement without disturbing or resisting the fluid. There are promising flow meters.

Ultrasonic Doppler flowmeters fabricated using the Doppler effect have received widespread attention in recent years and are considered to be ideal gauges for non-contact measurement of two-phase flow.

Fluid oscillating flowmeter

The fluid oscillating flowmeter is designed based on the principle that the fluid will oscillate when flowing under specific flow conditions, and the frequency of the oscillation is proportional to the flow velocity. When the flow cross section is constant, the flow rate is proportional to the flow volume of the pilot volume. Therefore, the flow rate can be measured by measuring the oscillation frequency. This flowmeter was developed and developed in the 1970s. Because it combines the advantages of non-rotating components and pulsed digital output, it has a promising future. At present, typical products include vortex flowmeters and spiral vortex flowmeters.