high quality stainless steel 304 water meter

2019-10-03 00:11:11

high quality stainless steel 304 water meter

General principles for electromagnetic flowmeter selection
(1) Whether the medium to be tested is a conductive liquid or slurry, thereby determining whether an electromagnetic flow meter is selected;
(2) The conductivity of the measured medium determines the type of electromagnetic flowmeter—whether it is high conductivity or low conductivity;
(3) The nominal diameter of the large, small and common flow process pipelines required by the process, determine whether the flow rate of the medium is at a more economical flow point, whether the pipeline needs to be reduced, and then determine the diameter of the flowmeter;
(4) Determine whether to use an integrated or split flowmeter, and the degree of protection of the flowmeter, etc., based on the layout of the process piping.
(5) Selecting the electrode type according to whether the measured medium is easy to crystallize or crusting;
(6) selecting an electrode material according to the corrosiveness of the measured medium;
(7) The corrosiveness, wear and temperature of the measured medium determine the lining material to be used;
(8) The high working pressure of the measured medium determines the nominal pressure of the flow meter;
(9) The insulation of the process piping determines the type of grounding ring.

high quality stainless steel 304 water meter

Vortex flowmeter installation requirements for straight pipe sections:

It is very important that the vortex flowmeter installation meets the requirements for straight pipe sections. Its detailed requirements are as follows:
The flowmeter has certain requirements on the upstream and downstream straight pipe sections at the installation point, otherwise it will affect the measurement accuracy.
If there is a tapered pipe upstream of the installation point of the flowmeter, there should be a straight pipe section of not less than 15D (D is the pipe diameter) upstream of the flowmeter, and a straight pipe section of not less than 5D in the downstream.
If there is a diverging pipe upstream of the installation point of the flowmeter, the upstream of the flowmeter shall have a straight pipe section of not less than 18D (D is the pipe diameter), and the downstream shall have a straight pipe section of not less than 5D.
If there is a 90° elbow or down joint upstream of the installation point of the flowmeter, there should be a straight pipe section of not less than 20D upstream of the flowmeter, and a straight pipe section of not less than 5D downstream.
If there is a 90° elbow on the same plane upstream of the installation point of the flowmeter, there should be a straight pipe section of not less than 25D upstream of the flowmeter, and a straight pipe section of not less than 5D downstream.
The flow regulating valve or pressure regulating valve should be installed as far as possible downstream of the flowmeter 5D. If it must be installed upstream of the flowmeter, the upstream of the flowmeter should have a straight pipe section of not less than 25D, and the downstream should have a straight pipe section of not less than 5D. .
If there is a piston type or plunger type pump in the upstream of the flow meter, a piston type or a Roots type fan and a compressor, the upstream of the flow meter should have a straight pipe section of not less than 25D, and the downstream should have a straight pipe section of not less than 5D.
Special attention: If the valve is installed near the upstream of the installation point of the vortex flowmeter, the valve is continuously opened and closed, which has a great influence on the service life of the flowmeter, and it is very easy to cause permanent damage to the flowmeter. The flowmeter should be avoided to be installed on the very long pipelines in overhead. After a long time, the leakage of the flowmeter can easily cause the leakage of the flowmeter to the flange. If it has to be installed, it must be in the upstream and downstream of the flowmeter. Pipe fastening devices are provided separately.

high quality stainless steel 304 water meter

Several problems of solutions

Recalculating the differential pressure scale
Temperature and pressure compensation can only reduce the measurement error, not only can not solve the problem fundamentally, but also the measurement signal exceeds 20mA, resulting in steam leakage measurement. The transmitter measurement signal exceeds 20 mA, indicating that the actual measured differential pressure signal ΔP exceeds the design differential pressure value.
Increase temperature and pressure compensation
When the temperature and pressure of the steam change, the density of the steam changes, and the steam flow measurement produces an error. Measurement error can be reduced by temperature and pressure compensation. Since the temperature of the saturated steam is a single-valued function of the pressure, the temperature and pressure compensation of the saturated steam can be pressure compensated or temperature compensated. Because the pressure signal detection is sensitive and the compensation accuracy is high, it is compensated by pressure and realized by DCS.
Conclusion
Steam is a special medium. As the pressure and temperature change, the density of steam changes. Therefore, it is necessary to compensate for temperature and pressure. When the pressure and temperature fluctuation of the steam are not large, that is, when the operating condition parameters deviate from the design parameters and the influence on the measurement is small, the temperature and pressure compensation measures can achieve the purpose of accurate measurement. However, when the operating parameters deviate too much from the design parameters or the operating parameters fluctuate frequently and are too large, even with the temperature and pressure compensation, it is difficult to meet the measurement accuracy requirements. At this point, only differential pressure or flow can be recalculated for a particular throttling element.