electromagnetic sewage flow sensor

2019-10-20 09:41:26

electromagnetic sewage flow sensor

1. Measurements are not affected by changes in fluid density, viscosity, temperature, pressure, and conductivity;
2. There is no obstructed flow component in the measuring tube, no pressure loss, and the requirements of the straight pipe section are low. Unique adaptability to slurry measurement;
3. Reasonable selection of sensor lining and electrode materials, that is, good corrosion resistance and wear resistance;
4. The converter adopts novel excitation mode with low power consumption, stable zero point and high precision. The flow range can reach 150:1;
5. The converter can be integrated with the sensor or separated;
6. The converter adopts 16-bit high-performance microprocessor, 2x16LCD display, convenient parameter setting and reliable programming;
7. The flowmeter is a two-way measuring system with three totalizers: positive total, reverse total and total difference; can display positive and negative flow, and has multiple outputs: current, pulse, digital communication , HART;
8, the converter uses surface mount technology (SMT), with self-test and self-diagnosis function;
9. Measurement accuracy is not affected by changes in fluid density, viscosity, temperature, pressure and conductivity. The sensor induced voltage signal has a linear relationship with the average flow velocity, so the measurement accuracy is high.
10. There is no obstruction in the measuring pipe, so there is no additional pressure loss; there is no moving parts in the measuring pipe, so the life of the sensor is extremely long.
11. Since the induced voltage signal is formed in the entire space filled with the magnetic field and is the average value on the pipeline surface, the sensor requires a short straight pipe section and a pipe diameter of 5 times.
12. The converter adopts the latest and most advanced single-chip microcomputer (MCU) and surface mount technology (SMT) in the world. It has reliable performance, high precision, low power consumption, stable zero point and convenient parameter setting. Click on the Chinese display LCD to display the cumulative flow, instantaneous flow rate, flow rate, flow percentage, and more.
13, two-way measurement system, can measure forward flow, reverse flow. Special production technology and high-quality materials ensure that the performance of the product remains stable for a long time.

electromagnetic sewage flow sensor

Main features of vortex flowmeter
Measuring medium: nominal diameter of liquid, gas and steam: DN15-DN300 (non-standard products can be customized according to user requirements) Temperature range: -40°C~350°C Pressure specification: PN1.6Mpa; PN2.5Mpa; PN4.0Mpa, Higher pressure specifications can be customized to a specific range: normal range 1:10 Extended range 1:15 Pressure loss factor: Cd ≤ 2.6 System measurement accuracy: liquid, gas indication ± 1%, steam indication ± 1.5% plug-in flow The measured value is ±2.5% of the supply voltage: sensor +12VDC, +24VDC (optional) transmitter +24VDC.
On-site display type The meter comes with 3.6 lithium battery output signal: sensor pulse frequency signal 0.1~3000Hz low level ≤1V high level ≥6V.
Transmitter two-wire 4~20mADC current signal for vibration acceleration: Piezoelectric ≤0.2g Ambient temperature: -40°C~55°C (non-explosion-proof place) -20°C~55°C (explosion-proof place) Ambient humidity: Relative Humidity 5~85% signal remote transmission distance: ≤500m signal line interface: internal thread M20×1.5 explosion-proof grade: iaIICT2-T5 protection grade: ordinary IP65 submersible IP68 instrument material: converter shell is made of aluminum alloy, the body part is adopted 1Cr18Ni9Ti can also be made of special materials according to user requirements.

electromagnetic sewage flow sensor

Ultrasonic flowmeter measurement principle
When the ultrasonic beam propagates in the liquid, the flow of the liquid will cause a small change in the propagation time, and the change in the propagation time is proportional to the flow velocity of the liquid, and its relationship conforms to the following expression.
among them
θ is the angle between the sound beam and the direction of flow of the liquid
M is the number of linear travels of the sound beam in the liquid
D is the inner diameter of the pipe
Tup is the propagation time of the sound beam in the positive direction
Tdown is the propagation time of the sound beam in the reverse direction
ΔT=Tup –Tdown
Let the speed of sound in the stationary fluid be c, the velocity of the fluid flow be u, and the propagation distance be L. When the sound wave is in the same direction as the fluid flow direction (ie, the downstream direction), the propagation velocity is c+u; otherwise, the propagation velocity is cu. Two sets of ultrasonic generators and receivers (T1, R1) and (T2, R2) are placed at two places separated by L. When T1 is in the forward direction and T2 transmits ultrasonic waves in the reverse direction, the time required for the ultrasonic waves to reach the receivers R1 and R2 respectively is t1 and t2, then
T1=L/(c+u); t2=L/(c-u)
Since the flow velocity of the fluid in the industrial pipeline is much smaller than the sound velocity, that is, c>>u, the time difference between the two is ▽t=t2-t1=2Lu/cc. Thus, the propagation velocity of the acoustic wave in the fluid is known. When it is known, the flow rate u can be obtained by measuring the time difference ▽t, and the flow rate Q can be obtained. The method of measuring the flow using this principle is called the time difference method. In addition, a phase difference method, a frequency difference method, or the like can be used.