Neoprene liner electromagnetic flow meter

2020-09-26 11:23:47

Neoprene liner electromagnetic flow meter

Ultrasonic flowmeter features
The unique signal digitization processing technology makes the meter measurement signal more stable, anti-interference ability and more accurate measurement.
No mechanical transmission parts are not easily damaged, maintenance-free and have a long service life.
The circuit is more optimized, with high integration, low power consumption and high reliability.
Intelligent standard signal output, friendly man-machine interface, multiple secondary signal output, for you to choose.
Pipe-section small pipe diameter measurement is economical and convenient, and the measurement accuracy is high.
Detailed installation of ultrasonic flowmeter
Ultrasonic flowmeters should be aware of the site prior to installation, including:
1. What is the distance from the host at the installation of the sensor;
2. Pipe material, pipe wall thickness and pipe diameter;
3. Years of pipeline;
4. The type of fluid, whether it contains impurities, bubbles and whether it is full;
5. Fluid temperature;
6. Whether there is interference source at the installation site (such as frequency conversion, strong magnetic field, etc.);
7. Four seasons temperature at the host place;
8. Whether the power supply voltage used is stable;
9. Do you need remote signals and types;
According to the site conditions provided above, the manufacturer can configure the site conditions and, if necessary, special models.

Neoprene liner electromagnetic flow meter

Product advantage and preservation
The vortex flowmeter adopts micro-power high-tech, and can be operated continuously by lithium battery for more than one year, which saves the purchase and installation cost of cables and display instruments, and can display instantaneous flow and accumulated flow on the spot. The temperature-compensated integrated vortex flowmeter also has a temperature sensor that directly measures the temperature of the saturated steam and calculates the pressure to show the mass flow of the saturated steam. The temperature and pressure compensation integrated type has a temperature and pressure sensor. The gas flow measurement can directly measure the temperature and pressure of the gas medium, thereby indicating the volumetric volume flow of the gas.
In order to prevent accidental damage to the instrument, please keep the packaging status of our company when it is shipped to the user.
After the instrument arrives, it should be installed in time to avoid the insulation performance of the flow converter being reduced due to unexpected factors, and the metal parts are corroded. If you need to store for a long time, please observe the following:
1. When storing, try not to unpack.
2. The storage location should have the following conditions:
3. With rainproof and waterproof facilities
4. Not susceptible to mechanical vibration or shock
5. The instrument should be stored in the temperature and humidity ranges listed in the table below. The ideal temperature and humidity is 25 ° C, 65%
6. Ambient temperature -20 ° C ~ +60 ° C
7. Relative humidity 5% to 90%

Neoprene liner electromagnetic flow meter

Ultrasonic flowmeter measurement principle
When the ultrasonic beam propagates in the liquid, the flow of the liquid will cause a small change in the propagation time, and the change in the propagation time is proportional to the flow velocity of the liquid, and its relationship conforms to the following expression.
among them
θ is the angle between the sound beam and the direction of flow of the liquid
M is the number of linear travels of the sound beam in the liquid
D is the inner diameter of the pipe
Tup is the propagation time of the sound beam in the positive direction
Tdown is the propagation time of the sound beam in the reverse direction
ΔT=Tup –Tdown
Let the speed of sound in the stationary fluid be c, the velocity of the fluid flow be u, and the propagation distance be L. When the sound wave is in the same direction as the fluid flow direction (ie, the downstream direction), the propagation velocity is c+u; otherwise, the propagation velocity is cu. Two sets of ultrasonic generators and receivers (T1, R1) and (T2, R2) are placed at two places separated by L. When T1 is in the forward direction and T2 transmits ultrasonic waves in the reverse direction, the time required for the ultrasonic waves to reach the receivers R1 and R2 respectively is t1 and t2, then
T1=L/(c+u); t2=L/(c-u)
Since the flow velocity of the fluid in the industrial pipeline is much smaller than the sound velocity, that is, c>>u, the time difference between the two is ▽t=t2-t1=2Lu/cc. Thus, the propagation velocity of the acoustic wave in the fluid is known. When it is known, the flow rate u can be obtained by measuring the time difference ▽t, and the flow rate Q can be obtained. The method of measuring the flow using this principle is called the time difference method. In addition, a phase difference method, a frequency difference method, or the like can be used.