﻿ air vortex flow meter

# air vortex flow meter

2019-11-04 15:33:12

## air vortex flow meter

Instruments that measure fluid flow are collectively referred to as flow meters or flow meters. The flowmeter is one of the important instruments in industrial measurement. With the development of industrial production, the accuracy and range of flow measurement requirements are getting higher and higher, and the flow measurement technology is changing with each passing day. Various types of flow meters have been introduced to suit various applications. More than 100 flow meters have been put into use. From different perspectives, flow meters have different classification methods. There are two commonly used classification methods. One is to classify according to the measurement principle adopted by the flowmeter: the second is to classify according to the structural principle of the flowmeter.
Sort by measurement principle
a. Mechanical principle:
Instruments belonging to such principles have differential pressure type, rotor type using Bernoulli's theorem;
Impulse type using the momentum theorem, movable tube type;
Direct mass equation using Newton's second law;
a target using the principle of fluid momentum;
Turbine using the angular momentum theorem;
Vortex type using vortex principle of fluid oscillation;
Use the total static pressure difference of the pitot tube type as well as volumetric and sputum, trough and so on.
b. Electrical principle:
Electromagnetic,
Differential capacitor type,
Inductive,
Strain resistance type, etc.
c. Acoustic principle:
Ultrasonic.
d. Thermal principles:
Thermal type,
Direct calorimetry,
Indirect calorimetry and so on.

## air vortex flow meter

Ultrasonic flowmeter
The ultrasonic flowmeter is designed based on the geometrical principle that the velocity of the ultrasonic wave propagating in the flowing medium is equal to the average flow velocity of the measured medium and the velocity of the acoustic wave itself. It is also measured by the flow rate to reflect the flow rate. Although the ultrasonic flowmeter appeared only in the 1970s, it is very popular because it can be made into a non-contact type and can be connected to the ultrasonic water level gauge for opening flow measurement without disturbing or resisting the fluid. There are promising flow meters.
Ultrasonic Doppler flowmeters fabricated using the Doppler effect have received widespread attention in recent years and are considered to be ideal gauges for non-contact measurement of two-phase flow.
Fluid oscillating flowmeter
The fluid oscillating flowmeter is designed based on the principle that the fluid will oscillate when flowing under specific flow conditions, and the frequency of the oscillation is proportional to the flow velocity. When the flow cross section is constant, the flow rate is proportional to the flow volume of the pilot volume. Therefore, the flow rate can be measured by measuring the oscillation frequency. This flowmeter was developed and developed in the 1970s. Because it combines the advantages of non-rotating components and pulsed digital output, it has a promising future. At present, typical products include vortex flowmeters and spiral vortex flowmeters.

## air vortex flow meter

Some experiences on using ultrasonic flowmeter
1. The flowmeter has two modes, diagonal and reflective. When the reflection mode is not detected, it can be measured in diagonal mode, so that we have been using the reflection mode.
2. The flowmeter requires a relatively high pipe, and the insulation layer must be scraped off, otherwise it cannot be measured. When we measured the air conditioning water system, we cut the insulation layer with a knife to prevent the sensor. After the measurement, the cut insulation layer was glued. The surface of the pipe should be as bright as possible. If it is too rough, it must be sanded.
3. It is difficult to measure when the fluid in the pipeline is not full, so the measuring position should be as straight as possible, away from elbows, valves and other places.
4. The authenticity of the flowmeter reading depends on the signal strength. When the signal is too low, the result is basically unreliable, generally more than 60% or even more.
5. Since the readings may vary greatly, the approach we take is to have the flowmeter read continuously, such as continuously recording one minute of reading and then taking the average.
6. Measuring hot water lines is more difficult than cold water lines. Because the wall temperature of the hot water pipe is high, the coupling agent is easily formed at a high temperature. In addition to the product's own coupling agent, we have tried toothpaste.
The summary of ultrasonic flowmeter measurement accuracy and accuracy needs to be improved.