12v dc emg wafer flow meter

2019-11-06 17:38:22

12v dc emg wafer flow meter

Choice of caliber
The choice of the diameter of the electromagnetic flowmeter is not necessarily the same as the diameter of the pipe, and should be determined by the flow rate and flow rate. However, as the chemical raw materials and intermediate liquid of Salt Lake, the viscosity is large and the flow rate is low (generally 2.0 to 4.0 m/s). The electromagnetic flowmeter is used on such a pipe, and the diameter of the sensor is the same as the diameter of the pipe. If the flow rate is lower than 1.0m/s, an electromagnetic flowmeter of appropriate flow rate can be selected to ensure measurement accuracy and relatively reduce investment.
Selection of flow rate and range
Basically, they are anti-corrosion plastic pipes, and considering the lining of the flow meter, the flow rate is generally controlled at 2m/s. For some materials that are easy to crystallize (such as sodium carbonate solution, compounding liquid: crystallized mainly boron and magnesium double salt), the flow rate is increased to 3.0 to 4.0 m/s by taking measures. The flow rate will increase the flow noise, and the vibration of the pipeline will affect the measurement accuracy. Under the condition that the electromagnetic flowmeter is installed, the shock absorber should be installed before and after. The full scale of the meter is greater than the expected maximum flow value, which is typically 1.2 times the estimated maximum flow. The normal measurement flow is greater than 50% of the full scale of the meter to ensure a certain measurement accuracy.

12v dc emg wafer flow meter

Ultrasonic Flowmeter Introduction and Features
Definition:
Ultrasonic flow meters are meters that measure the flow by detecting the effect of fluid flow on the ultrasound beam (or ultrasound pulse).
Principle:
According to the principle of signal detection, ultrasonic flowmeter can be divided into propagation velocity difference method (direct time difference method, time difference method, phase difference method and frequency difference method), beam offset method, Doppler method, cross correlation method, spatial filtering method. And noise law, etc.
Ultrasonic flowmeter is the same as electromagnetic flowmeter. It is an unobstructed flowmeter because it does not have any obstruction parts. It is a kind of flowmeter suitable for solving difficult flow measurement problems, especially in large-diameter flow measurement. The advantage is that it is one of the fastest growing types of flow meters.
Features:
Unique signal digital processing technology makes the meter measurement signal more stable, anti-interference ability and more accurate measurement.
No mechanical transmission parts are not easy to damage, maintenance-free and long life.
The circuit is more optimized and integrated; the power consumption is low and the reliability is high.
Intelligent standard signal output, friendly man-machine interface, multiple secondary signal output, for you to choose.
Pipe-type small pipe diameter measurement is economical and convenient, and the measurement accuracy is high.

12v dc emg wafer flow meter

ltrasonic flowmeter installation
The time difference ultrasonic flowmeter is a competitive flow measurement method in the world today, and its measurement line accuracy is higher than 1.0%. Due to the diversity of the industrial site, especially the environment around the pipeline, how to install and debug the ultrasonic flowmeter according to the specific environment has become an important topic in the field of ultrasonic flow measurement. This procedure explains the installation details of the ultrasonic flowmeter; It further fully demonstrates the advantages of accuracy, reliability and stability of the ultrasonic flowmeter, greatly reducing future maintenance work and even maintenance-free.
Installation details:
Ultrasonic flowmeters should be aware of the site prior to installation, including:
1. What is the distance from the host at the installation of the sensor;
2. Pipe material, pipe wall thickness and pipe diameter;
3. Year of the pipeline;
4. Type of fluid, whether it contains impurities, bubbles, and whether it is full;
5. Fluid temperature
6. Whether there is interference source at the installation site (such as frequency conversion, strong magnetic field, etc.);
7. The temperature of the four seasons at the host site;
8. Whether the power supply voltage used is stable;
9. Whether remote signals and types are required;
According to the site conditions provided above, the manufacturer can configure the site conditions and, if necessary, special models.