4-20ma remote conditioning water flow meter

2019-11-07 18:12:06

4-20ma remote conditioning water flow meter

Pressure and temperature selection
The actual working pressure of the fluid in the pipeline should be less than the rated working pressure of the flowmeter. Pay attention to whether there is negative pressure in the pipeline, such as the evaporation process, and the negative pressure is up to -60KPa. Such working conditions should be communicated with the manufacturer's technicians when ordering. Strict requirements are imposed on the lining material. The actual temperature should meet the temperature requirements specified by the flowmeter.
Power supply selection
The choice of the electromagnetic flowmeter power supply should be selected according to the flowmeter itself and the environment of the site. If the site allows, the power supply is convenient, safe and easy to maintain. As a chemical company, more than 90% of the raw materials and process links are in the liquid phase. During operation, the internal humidity of the workshop is large, and no flammable gas is generated during the whole operation. It is safer to use DC24V for power supply. Outdoor dry environment, choose AC220V power supply, convenient lead wire, good maintenance and low cost.
Some explosion-proof occasions, such as flowmeters used in gas boilers, are ideal for battery-powered electromagnetic flowmeters.

4-20ma remote conditioning water flow meter

Ultrasonic flowmeter measurement principle
When the ultrasonic beam propagates in the liquid, the flow of the liquid will cause a small change in the propagation time, and the change in the propagation time is proportional to the flow velocity of the liquid, and its relationship conforms to the following expression.
among them
θ is the angle between the sound beam and the direction of flow of the liquid
M is the number of linear travels of the sound beam in the liquid
D is the inner diameter of the pipe
Tup is the propagation time of the sound beam in the positive direction
Tdown is the propagation time of the sound beam in the reverse direction
ΔT=Tup –Tdown
Let the speed of sound in the stationary fluid be c, the velocity of the fluid flow be u, and the propagation distance be L. When the sound wave is in the same direction as the fluid flow direction (ie, the downstream direction), the propagation velocity is c+u; otherwise, the propagation velocity is cu. Two sets of ultrasonic generators and receivers (T1, R1) and (T2, R2) are placed at two places separated by L. When T1 is in the forward direction and T2 transmits ultrasonic waves in the reverse direction, the time required for the ultrasonic waves to reach the receivers R1 and R2 respectively is t1 and t2, then
T1=L/(c+u); t2=L/(c-u)
Since the flow velocity of the fluid in the industrial pipeline is much smaller than the sound velocity, that is, c>>u, the time difference between the two is ▽t=t2-t1=2Lu/cc. Thus, the propagation velocity of the acoustic wave in the fluid is known. When it is known, the flow rate u can be obtained by measuring the time difference ▽t, and the flow rate Q can be obtained. The method of measuring the flow using this principle is called the time difference method. In addition, a phase difference method, a frequency difference method, or the like can be used.

4-20ma remote conditioning water flow meter

ltrasonic flowmeter installation
The time difference ultrasonic flowmeter is a competitive flow measurement method in the world today, and its measurement line accuracy is higher than 1.0%. Due to the diversity of the industrial site, especially the environment around the pipeline, how to install and debug the ultrasonic flowmeter according to the specific environment has become an important topic in the field of ultrasonic flow measurement. This procedure explains the installation details of the ultrasonic flowmeter; It further fully demonstrates the advantages of accuracy, reliability and stability of the ultrasonic flowmeter, greatly reducing future maintenance work and even maintenance-free.
Installation details:
Ultrasonic flowmeters should be aware of the site prior to installation, including:
1. What is the distance from the host at the installation of the sensor;
2. Pipe material, pipe wall thickness and pipe diameter;
3. Year of the pipeline;
4. Type of fluid, whether it contains impurities, bubbles, and whether it is full;
5. Fluid temperature
6. Whether there is interference source at the installation site (such as frequency conversion, strong magnetic field, etc.);
7. The temperature of the four seasons at the host site;
8. Whether the power supply voltage used is stable;
9. Whether remote signals and types are required;
According to the site conditions provided above, the manufacturer can configure the site conditions and, if necessary, special models.