Measuring principle of electromagnetic flowmeter
The principle of electromagnetic flowmeter measurement is based on Faraday's law of electromagnetic induction. The measuring tube of the flow meter is a non-magnetic alloy short tube lined with an insulating material. The two electrodes are fixed to the measuring tube through the tube wall in the tube diameter direction. The electrode tip is substantially flush with the inner surface of the liner. When the exciting coil is excited by the bidirectional square wave pulse, a working magnetic field having a magnetic flux density B is generated in a direction perpendicular to the axis of the measuring tube. At this time, if the fluid having a certain conductivity passes through the measuring tube, the cutting magnetic line induces the electromotive force E. The electromotive force E is proportional to the product of the magnetic flux density B, the inner diameter D of the measuring tube and the average velocity V. The electromotive force E (flow signal) is detected by the electrode and sent to the converter through the cable. After the converter amplifies the flow signal, it can display the fluid flow, and can output signals such as pulse and analog current for flow control and regulation.
Main features of vortex flowmeter
Measuring medium: nominal diameter of liquid, gas and steam: DN15-DN300 (non-standard products can be customized according to user requirements) Temperature range: -40°C~350°C Pressure specification: PN1.6Mpa; PN2.5Mpa; PN4.0Mpa, Higher pressure specifications can be customized to a specific range: normal range 1:10 Extended range 1:15 Pressure loss factor: Cd ≤ 2.6 System measurement accuracy: liquid, gas indication ± 1%, steam indication ± 1.5% plug-in flow The measured value is ±2.5% of the supply voltage: sensor +12VDC, +24VDC (optional) transmitter +24VDC.
On-site display type The meter comes with 3.6 lithium battery output signal: sensor pulse frequency signal 0.1~3000Hz low level ≤1V high level ≥6V.
Transmitter two-wire 4~20mADC current signal for vibration acceleration: Piezoelectric ≤0.2g Ambient temperature: -40°C~55°C (non-explosion-proof place) -20°C~55°C (explosion-proof place) Ambient humidity: Relative Humidity 5~85% signal remote transmission distance: ≤500m signal line interface: internal thread M20×1.5 explosion-proof grade: iaIICT2-T5 protection grade: ordinary IP65 submersible IP68 instrument material: converter shell is made of aluminum alloy, the body part is adopted 1Cr18Ni9Ti can also be made of special materials according to user requirements.
Ultrasonic flowmeter common problems (1)
1. The ultrasonic flowmeter probe is used for a period of time, and irregular alarms may occur. This problem is more common when there are more impurities in the transport medium. Solution: Clean the probe regularly (recommended once a year).
2. When the ultrasonic flowmeter transport medium contains liquid impurities such as water, the flow metering tube is prone to effusion, and the freezing of the pressure tube may occur when the temperature is low, especially in the northern regions in winter. Solution: Purge or electrify the pressure tube
3, the ultrasonic flowmeter is very strict on the requirements of the pipeline, there can be no abnormal noise, otherwise it will affect the measurement error.
During the propagation of ultrasonic waves, their strength is attenuated due to obstruction or absorption by impurities in the medium and medium. Whether it is an ultrasonic flowmeter or an ultrasonic level gauge, there is a certain requirement for the received sound wave intensity, so various attenuations are suppressed.
4. What is the instantaneous flow fluctuation?
The signal strength is large, and the measured fluid fluctuation is large.
Solution: Adjust the probe position, improve the signal strength, and ensure the signal strength is stable. If the fluid fluctuation is large, the position is not good. Re-select the point to ensure the 5D working condition after the first 10D.