chemical liquid electromagnetic flow meter

2019-11-26 12:27:42

chemical liquid electromagnetic flow meter

In order to make the electromagnetic flowmeter work stably and reliably, the following aspects should be noted when selecting the installation location:
1. Try to avoid ferromagnetic objects and equipment with strong electromagnetic fields (large motors, large transformers, etc.) to prevent the magnetic field from affecting the working magnetic field and flow signal of the sensor.
2. It should be installed in a dry and ventilated place to avoid sun and rain. The ambient temperature should be -20~+60°C, and the relative humidity is less than 85%.
3. There should be plenty of space around the flowmeter for easy installation and maintenance.
Installation suggestions:
The measurement principle of the electromagnetic flowmeter does not depend on the characteristics of the flow. If there is a certain turbulence and vortex in the pipeline, it will be generated in the non-measurement zone (such as elbow, tangential current limit or half-opening shut-off valve upstream). Nothing.
If steady-state eddy currents in the measurement zone affect the stability of the measurement and the accuracy of the measurement, then some measures should be taken to stabilize the flow rate distribution:
a.increase the length of the straight pipe before and after; b. use a flow stabilizer; c. reduce the cross section of the measuring point.

chemical liquid electromagnetic flow meter

The working principle of the impeller type flowmeter is that the impeller is placed in the fluid to be measured, and is rotated by the impact of the fluid flow, and the flow rate is reflected by the speed of the impeller rotation. Typical impeller flow meters are water meters and turbine flow meters, which may be of mechanical transmission output or electrical pulse output. Generally, the water meter output of the mechanical transmission has low accuracy and the error is about ±2%, but the structure is simple and the cost is low. The domestic production has been mass-produced, standardized, generalized and serialized. The accuracy of the turbine flowmeter for electrical pulse signal output is high, with a typical error of ±0.2% to 0.5%.
Differential pressure flowmeter (variable pressure drop flowmeter)
The differential pressure flowmeter consists of a primary device and a secondary device. The primary device is called a flow measuring element and is installed in the pipe of the fluid to be measured, generating a pressure difference proportional to the flow rate (flow rate) for the secondary device to display the flow rate. The secondary device is called a display instrument. It receives the differential pressure signal generated by the measuring component and converts it to the corresponding flow for display. The primary device of the differential pressure flow meter is often a throttling device or a dynamic pressure measuring device (piteron, constant velocity tube, etc.). The secondary device is equipped with various mechanical, electronic and combined differential pressure gauges with flow display instruments. The differential pressure sensitive components of the differential pressure gauge are mostly elastic components. Since the differential pressure and the flow rate are in a square root relationship, the flow display instrument is equipped with an open square device to linearize the flow scale. Most meters also have a flow accumulator to display cumulative flow for economic accounting. This method of measuring flow using differential pressure has a long history and is relatively mature. Generally, countries all over the world use it in more important occasions, accounting for about 70% of various flow measurement methods. The flow measurement of the main steam, feed water, condensate, etc. of the power plant is based on this meter.

chemical liquid electromagnetic flow meter

How the turbine flow meter works
The working principle of the turbine flowmeter: the fluid flows through the sensor housing. Since the blade of the impeller has a certain angle with the flow direction, the momentum of the fluid causes the blade to have a rotational moment. After the friction torque and the fluid resistance are overcome, the blade rotates, and the rotational speed is stabilized after the torque balance. Under certain conditions, the rotational speed is proportional to the flow rate. Due to the magnetic permeability of the blade, it is in the magnetic field of the signal detector (composed of permanent magnet and coil). The rotating blade cuts the magnetic field lines and periodically changes the coil. Magnetic flux, so that the two ends of the coil induce electricity
Pulse signal, which is amplified and shaped by the amplifier to form a continuous rectangular pulse wave with a certain amplitude, which can be transmitted to the display instrument to display the instantaneous flow rate and cumulative amount of the fluid. Within a certain flow range, the pulse frequency f is proportional to the instantaneous flow rate Q of the fluid flowing through the sensor. The flow equation is: Q = 3600 × f / k
In the formula:
F——pulse frequency [Hz];
K——the meter factor of the sensor [1/m], given by the checklist. If [1/L] is used, Q=3.6×f/k
Q——the instantaneous flow rate of the fluid (under working condition) [m3/h];
3600 - conversion factor.
The meter factor of each sensor is filled in the verification certificate by the manufacturer, and the k value is set in the matching display meter to display the instantaneous flow rate and the cumulative total amount.