magnetic BTU meter

2019-11-27 14:35:11

magnetic BTU meter

Ultrasonic flowmeter classification
Plug-in ultrasonic flowmeter: can be installed and maintained without interruption. Ceramic sensors are used for non-stop production installation using dedicated drilling equipment. Generally for mono measurement, in order to improve measurement accuracy, three channels can be selected.
Pipe-type ultrasonic flowmeter: the pipeline installation needs to be cut, but the subsequent maintenance can be stopped. Mono or 3-channel sensors are available.
External clip-on ultrasonic flowmeter: capable of performing fixed and mobile measurements. It is installed with a special coupling agent (silicone rubber cured at room temperature or high-temperature long-chain polymer grease) and does not damage the pipeline during installation.
Portable Ultrasonic Flowmeter: Portable, built-in rechargeable lithium battery, suitable for mobile measurement, with magnetic sensor.
1, non-contact measurement method, small size, easy to carry
2, suitable for on-site measurement of various sizes of pipe sound guiding media
3, built-in nickel-metal hydride rechargeable battery working time of more than 20 hours
4, user interface is flexible, easy to use
5, intelligent on-site printing function to ensure the integrity of the flow data
6, equipped with an integrated aluminum alloy protective box, can be used in harsh outdoor environments
Hand-held ultrasonic flowmeter: small size, light weight, built-in rechargeable lithium battery, hand-held, with magnetic sensor.
Explosion-proof ultrasonic flowmeter: used for explosive liquid flow measurement, it is explosion-proof and intrinsically safe. That is, the converter is explosion-proof and the sensor is intrinsically safe.

magnetic BTU meter

Vortex flowmeter common fault
1. The measurement range of the vortex flowmeter is large, generally 10:1, but the lower limit of measurement is limited by many factors: Re>10000 is the most basic condition for the operation of the vortex flowmeter. In addition, it is also responded by the vortex. The signal, the vortex frequency f is also small, and it also makes signal processing difficult. The upper limit of measurement is the frequency response of the sensor and the frequency limit of the circuit. Therefore, the flow rate range must be calculated and calculated according to the flow rate of the fluid. The environmental conditions on the site are complicated. In addition to the conditions such as ambient temperature, humidity, and atmosphere, electromagnetic interference should also be considered.
2, vibration is also a big enemy of this type of instrument. Therefore, care should be taken to avoid mechanical vibrations, especially the lateral vibration of the pipe (perpendicular to the pipe axis and the vertical vortex generating body axis). This effect cannot be suppressed and eliminated in the design of the flowmeter structure. Since the vortex signal is equally sensitive to the influence of the flow field, it is not suitable for the length of the straight pipe section to ensure the flow conditions necessary for stabilizing the vortex street. Even the capacitive and ultrasonic type with strong anti-vibration performance guarantees that the fluid is a fully developed one-way flow, which is not negligible.
The medium temperature also has a great influence on the performance of the vortex flowmeter. For example, the pressure stress type vortex flowmeter cannot be used for a long time at 300 °C, because its insulation resistance is rapidly reduced from 10-100 MΩ at normal temperature to 1-101 Ω, and the output signal is also small, resulting in deterioration of measurement characteristics. In the measurement system, the sensor and the converter should be installed separately to avoid long-term high temperature affecting the reliability and service life of the instrument. The vortex flowmeter is a relatively new type of flowmeter. It is in the development stage and is not very mature. If it is not properly selected, the performance will not work well. Only after reasonable selection and correct installation, it is necessary to carefully and regularly maintain during the use process, accumulate experience, improve the predictability of system failure and the ability to judge and deal with problems, so as to achieve satisfactory results.

magnetic BTU meter

How the turbine flow meter works
The working principle of the turbine flowmeter: the fluid flows through the sensor housing. Since the blade of the impeller has a certain angle with the flow direction, the momentum of the fluid causes the blade to have a rotational moment. After the friction torque and the fluid resistance are overcome, the blade rotates, and the rotational speed is stabilized after the torque balance. Under certain conditions, the rotational speed is proportional to the flow rate. Due to the magnetic permeability of the blade, it is in the magnetic field of the signal detector (composed of permanent magnet and coil). The rotating blade cuts the magnetic field lines and periodically changes the coil. Magnetic flux, so that the two ends of the coil induce electricity
Pulse signal, which is amplified and shaped by the amplifier to form a continuous rectangular pulse wave with a certain amplitude, which can be transmitted to the display instrument to display the instantaneous flow rate and cumulative amount of the fluid. Within a certain flow range, the pulse frequency f is proportional to the instantaneous flow rate Q of the fluid flowing through the sensor. The flow equation is: Q = 3600 × f / k
In the formula:
F——pulse frequency [Hz];
K——the meter factor of the sensor [1/m], given by the checklist. If [1/L] is used, Q=3.6×f/k
Q——the instantaneous flow rate of the fluid (under working condition) [m3/h];
3600 - conversion factor.
The meter factor of each sensor is filled in the verification certificate by the manufacturer, and the k value is set in the matching display meter to display the instantaneous flow rate and the cumulative total amount.