fischer porter electromagnetic flow meter

2019-11-27 14:35:51

fischer porter electromagnetic flow meter

Daily maintenance (1)
Only need to periodically check the instrument, check the environment around the instrument, remove the dirt, ensure that no water and other substances are inspected, check whether the wiring is good, check whether there is a new strong electromagnetic field device near the instrument or a new installed wire across the instrument. If the measuring medium is easy to contaminate the electrode or precipitate or scale in the measuring tube wall, it should be regularly cleaned and cleaned.
Folding fault finding
After the flowmeter starts to be put into operation or is put into operation for a period of time, it is found that the instrument is not working properly. First, check the external condition of the flowmeter, such as whether the power supply is good, whether the pipeline is leaking or is in a state of non-full pipe, whether there is air bubble in the pipe, whether the signal cable is Damage, converter output signal (ie rear position meter input loop) is open circuit. Remember to blindly disassemble the flowmeter.
Sensor check
Test equipment: one 500MΩ insulation resistance tester, one multimeter.
Test steps:
(1) When the pipeline is filled with medium, measure the resistance between terminals A, B and C with a multimeter. The resistance between A-C and B-C should be equal. If the difference is more than 1 time, there may be leakage of the electrode, condensation on the outer wall of the measuring tube or the junction box.
(2) In the case of lining drying, measure the insulation resistance between A-C and B-C with MΩ meter (should be greater than 200MΩ). Then use a multimeter to measure the resistance of the two electrodes in terminals A and B and the measuring tube (should be in short-circuit communication). If the insulation resistance is small, indicating that the electrode is leaking, the entire flowmeter should be returned to the factory for repair. If the insulation is reduced but there is still more than 50 MΩ and the inspection result of step (1) is normal, the outer wall of the measuring tube may be damp, and the inside of the outer casing may be dried by a hot air blower.
(3) Use a multimeter to measure the resistance between X and Y. If it exceeds 200 Ω, the excitation coil and its lead wire may be open or poorly connected. Remove the terminal block check.
(4) Check the insulation resistance between X, Y and C, which should be above 200 MΩ. If it is lowered, dry the inside of the casing with hot air. In actual operation, the decrease in coil insulation will result in increased measurement error and unstable instrument output signal.
(5) If it is determined that the sensor is faulty, please contact the manufacturer of the electromagnetic flowmeter. The general site cannot be solved and needs to be repaired by the manufacturer.

fischer porter electromagnetic flow meter

Vortex flowmeter working principle
The working principle of the vortex flowmeter is to arrange a vortex generator in the fluid, so that the vortex is alternately generated on both sides of the body, and the vortex column is asymmetrically arranged downstream of the vortex generator to generate a certain frequency, by the formula f= St*v/(1-1.27d/D)*d, (St is the Strauhal number, which is a dimensionless number, related to the vortex generator and Reynolds number; v is the flow velocity; d is the incident head width; D is the nominal diameter) to get the flow rate.
In general, the vortex flowmeter output signal (frequency) is not affected by changes in fluid properties and composition, which means that the meter factor is only related to the shape and size of the vortex generator and the Reynolds number. Its advantages are: simple and firm structure, convenient installation and maintenance; suitable for a variety of fluids, liquid, gas, steam and some mixed phases are applicable; high precision, generally up to ± 1% R; flow range is wide, up to 10 : 1 or 20:1 or more; low head loss; no zero drift; relatively cheap price; disadvantage: not suitable for low Reynolds number Re <20000, limited use of high viscosity, low flow rate, small diameter The requirements for the environment are high, and places with vibration should be eliminated as much as possible, and the upstream side needs to have a long straight pipe section; the meter factor is lower, and the larger the diameter, the lower the diameter. The signal resolution is reduced, so the aperture should not be too large, generally used in DN15~DN300mm.

fischer porter electromagnetic flow meter

Turbine Flowmeter Product Introduction
A flow meter that uses a turbine for measurement. It first converts the flow rate to the speed of the turbine and then converts the speed into an electrical signal proportional to the flow. This flow meter is used to detect instantaneous flow and total integrated flow, and its output signal is frequency, which is easy to digitize. In the figure, the induction coil and the permanent magnet are fixed together on the casing. When the ferromagnetic turbine blade passes the magnet, the magnetic resistance of the magnetic circuit changes to generate an induced signal. The signal is amplified and shaped by an amplifier and sent to a counter or frequency meter to display the total integrated flow. At the same time, the pulse frequency is frequency-voltage converted to indicate the instantaneous flow rate. The speed of the impeller is proportional to the flow rate, and the number of revolutions of the impeller is proportional to the total amount flowing. The output of the turbine flow meter is a frequency modulated signal that not only improves the immunity of the detection circuit, but also simplifies the flow detection system. It has a turndown ratio of 10:1 and an accuracy of ±0.2%. Turbine flowmeters with small inertia and small size have a time constant of 0.01 seconds.
Turbine flowmeter is the main type of velocity flowmeter. When the fluid to be measured flows through the turbine flowmeter sensor, under the action of the fluid, the impeller is forced to rotate, and its rotational speed is proportional to the average flow velocity of the pipeline. At the same time, the blade periodicity The magnetic flux generated by the electromagnet is cut and the magnetic flux of the coil is changed. According to the principle of electromagnetic induction, a pulsating potential signal, that is, an electric pulse signal, is generated in the coil, and the frequency of the electric pulsation signal is proportional to the flow rate of the fluid to be measured.