water measuring device

2019-12-03 17:08:59

water measuring device

Because all kinds of ultrasonic flowmeters can be installed outside the pipe, non-contact flow measurement, the cost of the instrument is basically independent of the size of the pipe to be tested, while other types of flowmeters increase with the increase in caliber, so the cost is increased. The flowmeter is superior to the other functions of the same type of flowmeter. It is considered to be a good large-diameter flow measuring instrument. The Doppler ultrasonic flowmeter can measure the flow of two-phase medium, so it can be used for the measurement of dirty sewage such as sewers and sewage. In power plants, the use of portable ultrasonic flowmeters to measure large pipe diameters such as turbine water inflow and turbine circulating water is much more convenient than in the past. Ultrasonic flow juice can also be used for gas measurement. Pipe diameters range from 2cm to 5m, from a few meters wide open channels, culverts to 500m wide rivers.
In addition, the accuracy of the flow measurement of the ultrasonic measuring instrument is almost independent of the temperature, pressure, viscosity, density and other parameters of the measured fluid, and can be made into non-contact and portable measuring instruments, so it can solve the problem that other types of instruments are difficult to measure. Flow measurement problems for corrosive, non-conductive, radioactive, and flammable and explosive media. In addition, in view of the non-contact measurement characteristics, coupled with reasonable electronic circuits, one instrument can adapt to a variety of pipe diameter measurements and a variety of flow range measurements. The adaptability of ultrasonic flowmeters is also unmatched by other instruments. Ultrasonic flowmeters have some of the above advantages, so it has received more and more attention and has been developed into a series of products and generalization. It has been made into standard, high-temperature, explosion-proof and wet instruments of different channels to adapt to different media. Flow measurement for occasions and different pipeline conditions.

water measuring device

Executive Standard: JB/T 9248-1999
Nominal diameter: 15, 20, 25, 32, 40, 50, 65, 80, 100, 125, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600, 2800, 3000
Maximum flow rate: 15m/s
Accuracy: DNl5~DN600, indication: ±0.3% (flow rate ≥1m/s); ±3mm/s (flow rate <1m/s)
DN700-DN3000, ±0.5% of the indicated value (flow rate ≥0.8m/S); ±4mm/s (flow rate <0.8m/S)
Fluid conductivity ≥5uS/cm
Nominal pressure:
DNl5~DN: 1504.0MPa, DNl5~DN600: 1.6MPa, DN200~DN1000: 1.0MPa, DN700~DN3000: 0.6MPa, Special order: 6.3, 10MPa
Ambient temperature
Sensor: -25 °C - ten 60 °C
Converter and integrated type: -10 ° C - ten 60 °C
Lining material: PTFE, neoprene, polyurethane, polytetrafluoroethylene (F46), screened PFA
Maximum fluid temperature
- Body type 70 °C
Separate type: Polychloroprene lining 80 ° C; 120 °C (specify when ordering)
Polyurethane lining 80 °C
PTFE lining
Polytetrafluoroethylene propylene (F46) 100 °C; 150 °C (specify when ordering)
Screening PFA
Signal electrode and grounding electrode material: stainless steel 0Crl8Nil2M02Ti, Hastelloy C, Hastelloy B, titanium, tantalum, platinum/rhodium alloy, stainless steel coated tungsten carbide
Electrode scraper mechanism: DN300-DN3000
Connecting flange material: carbon steel
Grounding flange material: stainless steel 1Crl8Ni9Ti
Import protection:
DN65—DNl50: Stainless steel 1Crl8Ni9Ti
Flange material
DN200~DNl600: Carbon steel ten stainless steel 1Crl8Ni9Ti
Shell protection
DNl5~DN3000 separate rubber or polyurethane lining sensor: IP65 or IP68
Other sensors, body flow meters and split converters: IP65
Spacing (separate type): The converter distance sensor generally does not exceed 100m

water measuring device

Fourth, the liquid turbine flowmeter put into operation the opening and closing sequence
1. The sequence of opening and closing of the operation
For flow sensors without a bypass line, first open the flow sensor upstream valve at a medium opening and then slowly open the downstream valve. Run at a small flow rate for a period of time (eg 10 minutes), then fully open the upstream valve, then open the large downstream valve opening to adjust to the required normal flow.
The flow sensor equipped with the bypass pipe first opens the bypass pipe valve to open the upstream valve at a medium opening degree, slowly opens the downstream valve, and closes the opening of the small bypass valve to make the instrument run for a period of time with a small flow rate. Then fully open the upstream valve, fully close the bypass valve (to ensure no leakage), and finally adjust the downstream valve opening to the required flow.
2. Activation of low temperature and high temperature fluids
The low-temperature fluid pipeline should drain the water in the pipeline before the flow, and then run for 15 minutes at a small flow rate, and then gradually increase to the normal flow. Slow down when stopping, so that the pipe temperature and ambient temperature are gradually approaching. High temperature fluid operation is similar to this.