Digital water flow meter counter

2019-12-09 16:47:41

Digital water flow meter counter

Choice of caliber
The choice of the diameter of the electromagnetic flowmeter is not necessarily the same as the diameter of the pipe, and should be determined by the flow rate and flow rate. However, as the chemical raw materials and intermediate liquid of Salt Lake, the viscosity is large and the flow rate is low (generally 2.0 to 4.0 m/s). The electromagnetic flowmeter is used on such a pipe, and the diameter of the sensor is the same as the diameter of the pipe. If the flow rate is lower than 1.0m/s, an electromagnetic flowmeter of appropriate flow rate can be selected to ensure measurement accuracy and relatively reduce investment.
Selection of flow rate and range
Basically, they are anti-corrosion plastic pipes, and considering the lining of the flow meter, the flow rate is generally controlled at 2m/s. For some materials that are easy to crystallize (such as sodium carbonate solution, compounding liquid: crystallized mainly boron and magnesium double salt), the flow rate is increased to 3.0 to 4.0 m/s by taking measures. The flow rate will increase the flow noise, and the vibration of the pipeline will affect the measurement accuracy. Under the condition that the electromagnetic flowmeter is installed, the shock absorber should be installed before and after. The full scale of the meter is greater than the expected maximum flow value, which is typically 1.2 times the estimated maximum flow. The normal measurement flow is greater than 50% of the full scale of the meter to ensure a certain measurement accuracy.

Digital water flow meter counter

Electrode material
Corrosion resistance and wear resistance
Stainless steel: 0Crl8Nil2M02Ti is used for industrial water, domestic water, sewage and other weakly corrosive media. It is suitable for petroleum, chemical, steel and other industrial sectors as well as municipal, environmental protection and other fields.
Hastelloy B: has good corrosion resistance to hydrochloric acid at all concentrations below the boiling point, and is also resistant to corrosion by non-chlorinated acids, bases, non-oxidizing salts such as sulfuric acid, phosphoric acid, hydrofluoric acid, and organic acids.
Hastelloy C: resistant to non-oxidizing acids, such as nitric acid, mixed acid, or corrosion of mixed media of chromic acid and sulfuric acid, and also resistant to oxidizing salts such as Fe, ", Cu" or other oxidants, such as Corrosion of hypochlorite solution and seawater above normal temperature
Titanium: It is resistant to seawater, various chlorides and hypochlorites, oxidizing acids (including fuming sulfuric acid), organic acids and alkalis. It is not resistant to the corrosion of relatively pure reducing acids (such as sulfuric acid or hydrochloric acid), but if the acid contains an oxidizing agent (such as nitric acid, Fc++, Cu++), the corrosion is greatly reduced.
钽: Excellent corrosion resistance and glass are very similar. In addition to hydrofluoric acid, fuming sulfuric acid, alkali, it is almost resistant to the corrosion of chemical media (including boiling point of hydrochloric acid, nitric acid and sulfuric acid below 50 ° C). Antimony in alkali; corrosion resistant.
Platinum/titanium alloy
Almost resistant - cut chemical media, but not for aqua regia and ammonium salts.
Stainless steel coated tungsten carbide
For non-corrosive, strong abrasive media.
Note: Due to the wide variety of media, its corrosiveness is affected by complex factors such as temperature, concentration and flow rate, so this table is for reference only. The user should make his own choice according to the actual situation. If necessary, the corrosion resistance test of the material to be selected, such as the coupon test.

Digital water flow meter counter

Third, the spiral vortex flowmeter measurement characteristics
The spiral vortex flowmeter is a flowmeter that began to appear in the 1970s. Its working principle is: the gas that enters the gas swirling vortex flowmeter is first forced by the spiral spinner to accelerate the rotation to form a vortex, the center of the vortex. For the vortex core. The accelerated vortex enters the enlarged section and then decelerates sharply. The pressure rises to produce a recirculation. Under the action of the recirculation, the vortex core makes a spiral precession around the axis of the flowmeter. The flow rate Q can be derived by measuring the vortex precession frequency f by sensing the sensitive component.
Fourth, gas turbine flowmeter and spiral vortex flowmeter measurement difference
The gas turbine flowmeter has a small pressure loss and can be suitable for gas metering in low pressure conveying applications. Gas-injected vortex flowmeters have a slightly higher pressure loss, and gas metering in low-pressure delivery situations sometimes has problems.
Gas turbine flowmeters require high media cleanliness and can be damaged if used improperly. The gas swirling vortex flowmeter gas swirling vortex flowmeter requires no gas turbine flowmeter and is not damaged.
Gas turbine flowmeters are highly accurate. It is the most accurate of all flow meters. The gas spiraling vortex flowmeter is not as accurate as the former.