electromagnetic flow transmitter

2019-12-22 20:09:22

electromagnetic flow transmitter

General principles for electromagnetic flowmeter selection
(1) Whether the medium to be tested is a conductive liquid or slurry, thereby determining whether an electromagnetic flow meter is selected;
(2) The conductivity of the measured medium determines the type of electromagnetic flowmeter—whether it is high conductivity or low conductivity;
(3) The nominal diameter of the large, small and common flow process pipelines required by the process, determine whether the flow rate of the medium is at a more economical flow point, whether the pipeline needs to be reduced, and then determine the diameter of the flowmeter;
(4) Determine whether to use an integrated or split flowmeter, and the degree of protection of the flowmeter, etc., based on the layout of the process piping.
(5) Selecting the electrode type according to whether the measured medium is easy to crystallize or crusting;
(6) selecting an electrode material according to the corrosiveness of the measured medium;
(7) The corrosiveness, wear and temperature of the measured medium determine the lining material to be used;
(8) The high working pressure of the measured medium determines the nominal pressure of the flow meter;
(9) The insulation of the process piping determines the type of grounding ring.

electromagnetic flow transmitter

Ultrasonic flowmeter performance characteristics
Measuring liquid: single fluid such as water, seawater, alkali, etc., turbidity less than 10000ppm, particle size less than 1mm
Pipe material: Ultrasonic penetrating full pipe such as steel, cast iron, PVC pipe, dense texture, no serious corrosion and scaling, allowing thin layer of dense lining
Pipe lining material: rubber, epoxy asphalt, fiberglass, mortar, etc., or unlined
Pipe diameter range: DN15mm~6000mm, plug-in sensor for pipe diameter DN25mm~6000mm
Flow rate range: -32m/s~0~+32m/s, bidirectional flow
Accuracy: ±1.0% of displayed value (under standard conditions). Configure plug-in sensor accuracy up to 0.5%
Linearity: 0.5%.
Signal output: 4-20mA or 0-20mA RS-485
Sensor: It is divided into external clip type and plug-in type. The standard configuration is clip-on. The maximum operating pressure of the plug-in sensor is 3 MPa.
Straight pipe length: upstream >10D, downstream >5D from pump outlet >30D (D: pipe diameter)
Display mode: 2*20 character LCD display with LED backlight
Protection level: IP65
Explosion-proof grade: ExdIIBT4
Fixed ultrasonic flowmeter power supply: AC110V, AC220V, DC8~36V or AC7~30V
Ambient temperature / humidity: Host -20 ° C ~ +80 ° C; sensor -20 ° C ~ +80 ° C or -20 ° C ~ +160 ° C optional, the sensor can be immersed in water, water depth less than 2m.

electromagnetic flow transmitter

First, the gas turbine flowmeter installation requirements
1. When the gas flowmeter is installed, it is strictly forbidden to directly conduct electric welding at the inlet and outlet flanges to avoid burning the internal parts of the flowmeter;
2. For the newly installed or overhauled pipeline, it must be purged to remove the debris in the pipeline before installing the flowmeter;
3. The gas turbine flowmeter should be installed in a place that is easy to maintain, has no strong electromagnetic field interference, no mechanical vibration and thermal radiation;
4. Gas turbine flowmeters should not be used in places where flow is frequently interrupted and there is strong pulsating flow or pressure pulsation;
5, the gas turbine flowmeter should ensure that the pipeline is coaxial, and prevent the gasket from protruding into the pipeline, otherwise it will disturb the flow profile;
6. The flow direction of the gas turbine flowmeter should be consistent with the direction marked on the casing. The upper and lower pipelines of the flowmeter should be guaranteed with 2DN and 1DN straight pipe sections;
7. When using external power supply, the flowmeter must have reliable grounding, but it should not share the grounding wire with the high-power system; when the pipeline is installed or repaired, the grounding wire of the welding system should not be overlapped with the flowmeter.
8. Since the flowmeter needs to be repaired and calibrated, in order to ensure normal gas supply, bypass piping should be set. The bypass pipe valve must be closed during normal use;
9. When constructing pipelines, it is advisable to install telescopic tubes or bellows to avoid serious stretching and causing breakage of the flowmeter;
10. When the gas turbine flowmeter is installed outdoors, the upper part should be covered to prevent the rainwater from immersing and the sun exposure affecting the service life of the flowmeter;
11. When installing the gas turbine flowmeter, it is advisable to add a filter to the flowmeter (filtering accuracy is recommended ≤20μm).
Second, gas turbine flowmeter requirements
1. When the gas turbine flowmeter is put into operation, the upstream valve of the flowmeter should be slowly opened (not less than 15 seconds), and then the downstream valve of the flowmeter should be slowly opened to prevent the instantaneous airflow from rushing to the turbine;
2. When the flowmeter needs to have a long-distance signal, it should be connected to the external power supply (+12~+24VDC) strictly according to the electrical performance index of the gas turbine flowmeter. It is strictly forbidden to directly connect 220VAC (or 380VAC) power supply at the signal output.