The lining material should be selected according to the corrosiveness, wear and temperature of the tested medium:
First, natural rubber (soft rubber)
1, better elasticity, wear resistance and tearing force
2, resistant to general weak acid, weak alkali corrosion
3. Water and sewage
Second, acid-resistant rubber (hard rubber)
It can withstand the corrosion of hydrochloric acid, acetic acid, oxalic acid, ammonia water, phosphoric acid and 50% sulfuric acid, sodium hydroxide and potassium hydroxide at normal temperature, but it is not resistant to corrosion by strong oxidants.
It can measure general acid, alkali and salt solutions.
Third, neoprene (Neoprene)
1, excellent elasticity, high tearing force, good wear resistance
2, resistant to general low concentration of acid and alkali, salt solution corrosion, but not resistant to oxidation of the medium, and temperature requirements <80 ° C;
It can measure water, sewage, mud and pulp.
Fourth, Polyurethane (Polyurethane)
1, excellent wear resistance
2, poor acid and alkali resistance, temperature requirements <40 ° C
Measure medium-strongly worn coal slurry, mud and slurry
Five, polytetrafluoroethylene (PTFE)
1. Boiling hydrochloric acid, sulfuric acid, nitric acid, aqua regia, concentrated alkali and various organic solvents
2, good wear resistance, poor bonding performance, temperature requirements -80 ~ +180 ° C;
Measuring concentration, concentrated alkali strong corrosive solution and sanitary medium
Electrode material
Corrosion resistance and wear resistance
Stainless steel: 0Crl8Nil2M02Ti is used for industrial water, domestic water, sewage and other weakly corrosive media. It is suitable for petroleum, chemical, steel and other industrial sectors as well as municipal, environmental protection and other fields.
Hastelloy B: has good corrosion resistance to hydrochloric acid at all concentrations below the boiling point, and is also resistant to corrosion by non-chlorinated acids, bases, non-oxidizing salts such as sulfuric acid, phosphoric acid, hydrofluoric acid, and organic acids.
Hastelloy C: resistant to non-oxidizing acids, such as nitric acid, mixed acid, or corrosion of mixed media of chromic acid and sulfuric acid, and also resistant to oxidizing salts such as Fe, ", Cu" or other oxidants, such as Corrosion of hypochlorite solution and seawater above normal temperature
Titanium: It is resistant to seawater, various chlorides and hypochlorites, oxidizing acids (including fuming sulfuric acid), organic acids and alkalis. It is not resistant to the corrosion of relatively pure reducing acids (such as sulfuric acid or hydrochloric acid), but if the acid contains an oxidizing agent (such as nitric acid, Fc++, Cu++), the corrosion is greatly reduced.
钽: Excellent corrosion resistance and glass are very similar. In addition to hydrofluoric acid, fuming sulfuric acid, alkali, it is almost resistant to the corrosion of chemical media (including boiling point of hydrochloric acid, nitric acid and sulfuric acid below 50 ° C). Antimony in alkali; corrosion resistant.
Platinum/titanium alloy
Almost resistant - cut chemical media, but not for aqua regia and ammonium salts.
Stainless steel coated tungsten carbide
For non-corrosive, strong abrasive media.
Note: Due to the wide variety of media, its corrosiveness is affected by complex factors such as temperature, concentration and flow rate, so this table is for reference only. The user should make his own choice according to the actual situation. If necessary, the corrosion resistance test of the material to be selected, such as the coupon test.
Compressed air flowmeter installation requirements
Keywords: compressed air flow meter, compressed air vortex flowmeter, air flowmeter
First, the compressed air vortex flowmeter installation requirements
1. The upstream of the compressed air vortex flowmeter should avoid installing the regulating valve or the semi-opening valve. The regulating valve or the semi-opening valve is installed after the downstream 8DN of the sensor.
2. The straight pipe section where the flowmeter is installed should be as close as possible to the sensor diameter. If it is not consistent, a pipe diameter slightly larger than the sensor diameter should be used, and the error should be ≤3% and not more than 5mm.
3. When the measured medium contains more impurities, the filter should be installed outside the length required for the straight pipe section upstream of the sensor.
4, the sensor should be avoided on the pipeline with mechanical vibration, and try to avoid strong electromagnetic field interference. When vibration cannot be avoided, consider adding a bracket to the straight pipe section about 2DN before and after the sensor.