Rosemount 8800d Vortex Flowmeter

2020-05-27 23:04:52

Rosemount 8800d Vortex Flowmeter

1. Measurements are not affected by changes in fluid density, viscosity, temperature, pressure, and conductivity;
2. There is no obstructed flow component in the measuring tube, no pressure loss, and the requirements of the straight pipe section are low. Unique adaptability to slurry measurement;
3. Reasonable selection of sensor lining and electrode materials, that is, good corrosion resistance and wear resistance;
4. The converter adopts novel excitation mode with low power consumption, stable zero point and high precision. The flow range can reach 150:1;
5. The converter can be integrated with the sensor or separated;
6. The converter adopts 16-bit high-performance microprocessor, 2x16LCD display, convenient parameter setting and reliable programming;
7. The flowmeter is a two-way measuring system with three totalizers: positive total, reverse total and total difference; can display positive and negative flow, and has multiple outputs: current, pulse, digital communication , HART;
8, the converter uses surface mount technology (SMT), with self-test and self-diagnosis function;
9. Measurement accuracy is not affected by changes in fluid density, viscosity, temperature, pressure and conductivity. The sensor induced voltage signal has a linear relationship with the average flow velocity, so the measurement accuracy is high.
10. There is no obstruction in the measuring pipe, so there is no additional pressure loss; there is no moving parts in the measuring pipe, so the life of the sensor is extremely long.
11. Since the induced voltage signal is formed in the entire space filled with the magnetic field and is the average value on the pipeline surface, the sensor requires a short straight pipe section and a pipe diameter of 5 times.
12. The converter adopts the latest and most advanced single-chip microcomputer (MCU) and surface mount technology (SMT) in the world. It has reliable performance, high precision, low power consumption, stable zero point and convenient parameter setting. Click on the Chinese display LCD to display the cumulative flow, instantaneous flow rate, flow rate, flow percentage, and more.
13, two-way measurement system, can measure forward flow, reverse flow. Special production technology and high-quality materials ensure that the performance of the product remains stable for a long time.

Rosemount 8800d Vortex Flowmeter

Fourth, the liquid turbine flowmeter put into operation the opening and closing sequence
1. The sequence of opening and closing of the operation
For flow sensors without a bypass line, first open the flow sensor upstream valve at a medium opening and then slowly open the downstream valve. Run at a small flow rate for a period of time (eg 10 minutes), then fully open the upstream valve, then open the large downstream valve opening to adjust to the required normal flow.
The flow sensor equipped with the bypass pipe first opens the bypass pipe valve to open the upstream valve at a medium opening degree, slowly opens the downstream valve, and closes the opening of the small bypass valve to make the instrument run for a period of time with a small flow rate. Then fully open the upstream valve, fully close the bypass valve (to ensure no leakage), and finally adjust the downstream valve opening to the required flow.
2. Activation of low temperature and high temperature fluids
The low-temperature fluid pipeline should drain the water in the pipeline before the flow, and then run for 15 minutes at a small flow rate, and then gradually increase to the normal flow. Slow down when stopping, so that the pipe temperature and ambient temperature are gradually approaching. High temperature fluid operation is similar to this.

Rosemount 8800d Vortex Flowmeter

Selection of measurement types for special industrial and commercial users
    2. Case 2: A heavy machine tool factory
    The main gas plant of the heavy-duty machine tool factory is 13 production kiln, and there is also a machine repair workshop and 63 mobile burners. The total gas load of all gas facilities is 1837m3/h. See Table 1 for details. The customer promised that all gas facilities could not be fully activated at the same time, the maximum gas consumption required was 1200m3/h, and the minimum pressure required before the furnace was 0.055MPa. The pressure regulator used in the on-site pressure regulating metering box is opened and ready, and the flow meter is in the form of a G1600 turbine table plus bypass.
    When debugging the kiln, it was found that the flowmeter in the pressure regulating metering box had a stop-and-go phenomenon. If only some of the kiln was opened or only some of the kiln was used, there would be a phenomenon that the flowmeter did not measure or the measurement error was large.