Flow Velocity Water Flow Meter

2020-07-11 00:30:02

Flow Velocity Water Flow Meter

Ultrasonic flowmeter features
The unique signal digitization processing technology makes the meter measurement signal more stable, anti-interference ability and more accurate measurement.
No mechanical transmission parts are not easily damaged, maintenance-free and have a long service life.
The circuit is more optimized, with high integration, low power consumption and high reliability.
Intelligent standard signal output, friendly man-machine interface, multiple secondary signal output, for you to choose.
Pipe-section small pipe diameter measurement is economical and convenient, and the measurement accuracy is high.
Detailed installation of ultrasonic flowmeter
Ultrasonic flowmeters should be aware of the site prior to installation, including:
1. What is the distance from the host at the installation of the sensor;
2. Pipe material, pipe wall thickness and pipe diameter;
3. Years of pipeline;
4. The type of fluid, whether it contains impurities, bubbles and whether it is full;
5. Fluid temperature;
6. Whether there is interference source at the installation site (such as frequency conversion, strong magnetic field, etc.);
7. Four seasons temperature at the host place;
8. Whether the power supply voltage used is stable;
9. Do you need remote signals and types;
According to the site conditions provided above, the manufacturer can configure the site conditions and, if necessary, special models.

Flow Velocity Water Flow Meter

Electrode material
Corrosion resistance and wear resistance
Stainless steel: 0Crl8Nil2M02Ti is used for industrial water, domestic water, sewage and other weakly corrosive media. It is suitable for petroleum, chemical, steel and other industrial sectors as well as municipal, environmental protection and other fields.
Hastelloy B: has good corrosion resistance to hydrochloric acid at all concentrations below the boiling point, and is also resistant to corrosion by non-chlorinated acids, bases, non-oxidizing salts such as sulfuric acid, phosphoric acid, hydrofluoric acid, and organic acids.
Hastelloy C: resistant to non-oxidizing acids, such as nitric acid, mixed acid, or corrosion of mixed media of chromic acid and sulfuric acid, and also resistant to oxidizing salts such as Fe, ", Cu" or other oxidants, such as Corrosion of hypochlorite solution and seawater above normal temperature
Titanium: It is resistant to seawater, various chlorides and hypochlorites, oxidizing acids (including fuming sulfuric acid), organic acids and alkalis. It is not resistant to the corrosion of relatively pure reducing acids (such as sulfuric acid or hydrochloric acid), but if the acid contains an oxidizing agent (such as nitric acid, Fc++, Cu++), the corrosion is greatly reduced.
钽: Excellent corrosion resistance and glass are very similar. In addition to hydrofluoric acid, fuming sulfuric acid, alkali, it is almost resistant to the corrosion of chemical media (including boiling point of hydrochloric acid, nitric acid and sulfuric acid below 50 ° C). Antimony in alkali; corrosion resistant.
Platinum/titanium alloy
Almost resistant - cut chemical media, but not for aqua regia and ammonium salts.
Stainless steel coated tungsten carbide
For non-corrosive, strong abrasive media.
Note: Due to the wide variety of media, its corrosiveness is affected by complex factors such as temperature, concentration and flow rate, so this table is for reference only. The user should make his own choice according to the actual situation. If necessary, the corrosion resistance test of the material to be selected, such as the coupon test.

Flow Velocity Water Flow Meter

Sensor check
Test equipment: one 500MΩ insulation resistance tester, one multimeter.
Test steps:
(1) When the pipeline is filled with medium, measure the resistance between terminals A, B and C with a multimeter. The resistance between A-C and B-C should be equal. If the difference is more than 1 time, there may be leakage of the electrode, condensation on the outer wall of the measuring tube or the junction box.
(2) In the case of lining drying, measure the insulation resistance between A-C and B-C with MΩ meter (should be greater than 200MΩ). Then use a multimeter to measure the resistance of the two electrodes in terminals A and B and the measuring tube (should be in short-circuit communication). If the insulation resistance is small, indicating that the electrode is leaking, the entire flowmeter should be returned to the factory for repair. If the insulation is reduced but there is still more than 50 MΩ and the inspection result of step (1) is normal, the outer wall of the measuring tube may be damp, and the inside of the outer casing may be dried by a hot air blower.
(3) Use a multimeter to measure the resistance between X and Y. If it exceeds 200 Ω, the excitation coil and its lead wire may be open or poorly connected. Remove the terminal block check.
(4) Check the insulation resistance between X, Y and C, which should be above 200 MΩ. If it is lowered, dry the inside of the casing with hot air. In actual operation, the decrease in coil insulation will result in increased measurement error and unstable instrument output signal.
(5) If it is determined that the sensor is faulty, please contact the manufacturer of the electromagnetic flowmeter. The general site cannot be solved and needs to be repaired by the manufacturer.