Electromagnetic Flow Meter Waste Water

2020-08-21 23:06:06

Electromagnetic Flow Meter Waste Water

The working principle of the impeller type flowmeter is that the impeller is placed in the fluid to be measured, and is rotated by the impact of the fluid flow, and the flow rate is reflected by the speed of the impeller rotation. Typical impeller flow meters are water meters and turbine flow meters, which may be of mechanical transmission output or electrical pulse output. Generally, the water meter output of the mechanical transmission has low accuracy and the error is about ±2%, but the structure is simple and the cost is low. The domestic production has been mass-produced, standardized, generalized and serialized. The accuracy of the turbine flowmeter for electrical pulse signal output is high, with a typical error of ±0.2% to 0.5%.
Differential pressure flowmeter (variable pressure drop flowmeter)
The differential pressure flowmeter consists of a primary device and a secondary device. The primary device is called a flow measuring element and is installed in the pipe of the fluid to be measured, generating a pressure difference proportional to the flow rate (flow rate) for the secondary device to display the flow rate. The secondary device is called a display instrument. It receives the differential pressure signal generated by the measuring component and converts it to the corresponding flow for display. The primary device of the differential pressure flow meter is often a throttling device or a dynamic pressure measuring device (piteron, constant velocity tube, etc.). The secondary device is equipped with various mechanical, electronic and combined differential pressure gauges with flow display instruments. The differential pressure sensitive components of the differential pressure gauge are mostly elastic components. Since the differential pressure and the flow rate are in a square root relationship, the flow display instrument is equipped with an open square device to linearize the flow scale. Most meters also have a flow accumulator to display cumulative flow for economic accounting. This method of measuring flow using differential pressure has a long history and is relatively mature. Generally, countries all over the world use it in more important occasions, accounting for about 70% of various flow measurement methods. The flow measurement of the main steam, feed water, condensate, etc. of the power plant is based on this meter.

Electromagnetic Flow Meter Waste Water

Liquid turbine flow meter classification and function description
Keywords: liquid turbine flowmeter, diesel liquid turbine flowmeter, pure water liquid turbine flowmeter
First, the liquid turbine flowmeter overview
The liquid turbine flowmeter is the main type of impeller flow (flow rate) meter, and the impeller type flowmeter also has an anemometer and a water meter. The TUF consists of a sensor and a conversion display. The sensor uses a multi-blade rotor to sense the average flow rate of the fluid, thereby deriving the flow or total amount. The rotational speed (or number of revolutions) of the rotor can be detected mechanically, magnetically, and photoelectrically and displayed and transmitted by the reading device.
Second, liquid turbine flowmeter classification
According to the classification of instrument functions, SDLWGY series turbine flowmeters can be divided into 2 categories.
1, turbine flow sensor / transmitter
2, intelligent integrated turbine flowmeter
Third, the liquid turbine flowmeter function description
1, turbine flow sensor / transmitter
This type of turbine flow product itself does not have a live display function, only the flow signal is transmitted far. The flow signal can be divided into pulse signal or current signal (4-20mA); the instrument is low in price, high in integration and small in size, and is especially suitable for use with computer control systems such as secondary display, PLC, DCS.

Electromagnetic Flow Meter Waste Water

In the case of small flow metering, the film surface ratio is the largest, the Roots flowmeter is second, and the turbine flowmeter is the smallest. The initial flow performance of the volumetric flowmeter should be superior to the velocity flowmeter. For industrial and commercial users with large total gas consumption and low heat load for each gas, the volumetric flowmeter, ie, the membrane meter and the Roots flowmeter, should be preferred to meet the flowmeter requirements of a single burner when used alone. It can also meet the measurement requirements of the maximum flow rate when all burners are used at the same time.
    Not all industrial and commercial users can solve the measurement problem by selecting a volumetric flowmeter with a larger range. The volumetric ratio of the volumetric flowmeter is limited, and it is impossible to increase without limit. The selection of the flowmeter cannot be solved. This kind of user has a measurement problem. When the user only uses a single device for gas, or when operating at low flow rate, the initial flow rate and minimum flow rate of a single flow meter may not meet the minimum flow rate requirement. A single large flow meter cannot measure low gas consumption, which will result in Large supply and marketing differences.